Формирование изображения в цифровой камере

Автор: | 24.07.2018

Начнем с простого. Рассмотрим простейшую камеру (Камера-обскура)

От каждой из точек объекта отражаются лучи света. Отверстие в преграде  пропускает только лишь один луч. Если не установить преграду, то на пленке получим бессмысленное изображение.

Отверстие в преграде называется апертурой или диафрагмой. В реальности оно пропускает больше одного луча. При этом точка отображается на пленке пятном.

Если диафрагма слишком большая, то изображение получается размытым. Однако, при чрезмерном уменьшении диафрагмы меньше света проходит на пленку и начинаются дифракционные эффекты. Дифракцией света называется явление отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий.

Линза позволяет использовать большую диафрагму и увеличить поток света от каждой точки

NN –главная оптическая ось, пересекающая центры сферических поверхностей

Пучок параллельных прямых пересекается в главном фокусе F

f – главное фокусное расстояние,

u,v – сопряженные фокусные расстояния

Луч, проходящий через центр линзы не преломляется!

Система точно как камера-обскура, но собирает больше света!

Фокусное расстояние — это расстояние от задней (или второй) главной точки объектива до его фокуса при вхождении в объектив пучка света, параллельного его оптической оси

Только часть объектов оказываются «в фокусе». Фокусировка камеры обеспечивается смещением матрицы относительно линзы (изменение сопряженного фокуса v), либо изменением степени преломления в линзе (изменение главного фокусного расстояния f )

Резко очерченными будут только те точки изображения, лучи которых образуют небольшое «пятно рассеивания»

Изменяя диафрагму можно изменять размер «пятен рассеивания» и одновременно увеличивать глубину резкости (интервал, на котором объект находится приблизительно в фокусе). При этом маленькая диафрагма уменьшает количество света – приходится увеличивать выдержку (время экспозиции).

Размер матрицы и ее расстояние до линзы определяют угол обзора (field-of-view) камеры

Матрица состоит из множества светочувствительных ячеек – пикселов. Каждая ячейка при попадании на нее света вырабатывает электрический сигнал, пропорциональный интенсивности светового потока. Если  используется информация только о яркости света, картинка получается черно-белой, а чтобы она была цветной, ячейки покрывают цветными фильтрами.

Размер пикселей в камере не должен быть меньше минимального размера точки объектива. Чтобы получить наилучший эффект от использования цифровой камеры с матрицей, содержащей мелкие пиксели, не следует использовать дешевую оптику.

Матрица (сенсор, фотодатчик) это устройство фотокамеры, где получается изображение. Собственно, это аналог фотоплёнки, или плёночного кадра. Как и в нём, лучи света, собранные объективом, «рисуют» картинку. Разница в том, что на плёнке эта картинка хранится, а на датчиках матрицы под действием света возникают электрические сигналы, которые обрабатываются процессором камеры, после чего изображение сохраняется в виде файла на карту памяти. Сама матрица фотоаппарата представляет собой специальную микросхему с фотодатчиками-пикселями (фотодиодами). Именно они при попадании света генерируют сигнал, тем больший, чем больше света попадает на этот датчик-пиксель.

В большинстве матриц каждый пиксел покрыт красным, синим или зеленым фильтром (только одним!) в соответствии с известной цветовой схемой RGB (red-green-blue). Почему именно эти цвета? Одной из гипотез, объясняющих цветовое зрение человека, является трехкомпонентная теория, которая утверждает, что в зрительной системе человека есть три типа светочувствительных элементов. Один тип элементов реагирует на зеленый, другой тип — на красный, а третий тип — на синий цвет.

На матрице фильтры располагаются группами по четыре, так что на два зеленых приходится по одному синему и красному. Так делается потому, что человеческий глаз наиболее чувствителен именно к зеленому цвету. Световые лучи разного спектра имеют разную длину волн, поэтому фильтр пропускает в ячейку лучи лишь своего цвета.

Итак, полученная картинка состоит только из пикселов красного, синего и зеленого цвета – именно в таком виде записываются файлы формата RAW (несжатый формат). Для записи файлов JPEG и TIFF процессор камеры анализирует цветовые значения соседних ячеек и рассчитывает цвет пикселов. Этот процесс обработки называется цветовой интерполяцией, и он исключительно важен для получения качественных фотографий.

Процессор камеры отвечает за все процессы, в результате которых получается картинка. Процессор определяет параметры экспозиции,  решает, какие из них нужно применить в данной ситуации. От процессора и программного обеспечения зависят качество фотографий и скорость работы камеры.

Термин «Экспозиция» означает количество света, попадающего на светочувствительный фотоматериал за определенный промежуток времени. Три основных параметра, влияющие на экспозицию, — это чувствительность, выдержка и диафрагма.

Следует отметить, что в процессе формирования изображения возникают различные искажения. Искажения снимков, сформированные системой оптики при фотосъемке, называют аберрациями. В зависимости от природы происхождения аберрации бывают хроматическими (цветовыми)

и геометрическими (называют дисторсией).

Хроматические (цветовые) аберрации – это оптические искажения, вызванные разными углами преломления световых волн разной длины. У красного цвета – максимальное преломление, у фиолетового – минимальное

Степень искажений зависит от качества объектива и уменьшается с помощью использования специальных линз. Так, например, хроматические аберрации могут быть уменьшены ахроматической линзы, состоящей из двух сортов стекла (крон и флинт).

 

Дисторсия –  геометрическое искажение прямых линий. Дисторсии возникают в результате изменения линейного увеличения, обеспеченного оптикой, по полю изображения. Есть два вида дисторсии – бочкообразная (отрицательная) и подушкообразная (положительная).

Для снижения дисторсий применяется асферическая оптика. В конструкцию объектива включают линзы с эллиптической или параболической поверхностью, за счет чего геометрическое подобие между объектом фотографии и его изображением восстанавливается.

Львиную часть этих искажений можно компенсировать с помощью методов цифровой обработки изображений – калибровки. Сущность метода калибровки заключается  в сравнении эталонных и реальных параметров, и в аналитическом учете искажений.

После того, как съемка произведена, остается не менее важная задача – сохранить полученное фото на карте памяти. Желательно сделать это с максимальным качеством, не теряя никакой информации, полученной при съемке. Сегодня большинство фотокамер позволяют сохранять снимки в двух принципиально разных форматах – RAW и JPEG. RAW – это сырая, никак не обработанная информация с матрицы, записанная в файл. Предполагается, что дальше с файлом RAW фотограф будет работать самостоятельно, конвертируя его на компьютере для получения готового фото. JPEG – это уже фактически готовая фотография.

Некоторые, обычно более дорогие, фотоаппараты, предлагают сохранять фотографии в «сыром» (RAW) формате. Для сырого формата, нет каких-то определённых стандартов. они отличаются от производителя к производителю. Сырой формат содержит все данные, полученные непосредственно с фоточувствительного элемента, перед тем, как программное обеспечение фотоаппарата изменит баланс белого или что-то ещё. Сохранение фотографии в сыром формате, позволяет вам более качественно изменять такие настройки, как баланс белого, уже после того как фотография сохранена на ПК. Большинство профессиональных фотографов используют сырой формат, потому что он даёт им максимум гибкости в допечатной подготовке. Обратная сторона гибкости — «сырые» фотографии занимают чрезвычайно много места на карте памяти.

Сжатие изображений — применение методов сжатия данных к цифровому изображению. Благодаря снижению избыточности данных изображения, удаётся повысить эффективность хранения и передачи изображений.

Сжатие изображений бывает с потерями и без потерь. Методы сжатия без потерь используются для архивации изображений, перед применением каких либо фильтров (кадрирование, изменение размера, корректировка цвета и т.д.), тогда как методы с потерями, особенно с высокими коэффициентами сжатия, вносят искажения в изображение. Методы с потерями хорошо подходят для естественных изображений, таких как фотографии в приложениях, где небольшие (иногда незаметные) искажения изображения вполне приемлемы для достижения заданной степени сжатия. Сжатие с потерями удобно использовать для публикации фотографий в интернете.

JPEG — формат сжатия, который несколько ухудшает качество, чтобы уменьшить размер файла, занимаемого фотографией.

TIFF — широко принятый формат изображений. Обычно, в формате TIFF фотоаппараты сохраняют несжатые снимки, или сжатые по алгоритму без потерь.

PNG — расширяемый, переносимый формат хранения растровых изображений без потерь, с хорошим сжатием.

 

Автор: Николай Свирневский

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *